ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

SIERPINSKI Waclaw, polonais, 1882-1969

Waclaw Sierpinski fit ses études de mathématiques et physiques à Varsovie, sa ville natale, sous l'autorité de la Russie impériale car à cette époque les russes se partageaient la Pologne avec l'Autriche et la Prusse (Allemagne). Sierpinski obtient son doctorat (1906) portant sur la théorie des nombres, dirigé par le mathématicien russe Guerogui Voronoï à l'université de Cracovie (située sur la Vistule au sud de la Pologne). Avant la première guerre mondiale, Sierpinski enseigna à Lvov (ville universitaire anciennement polonaise, dans l'actuel Ukraine) puis à Varsovie. De confession juive, déporté par les nazis lors de la seconde guerre mondiale, il put reprendre son enseignement et ses travaux à Varsovie à l'issue de la guerre.

Sierpinski ambitionnait de fonder une école mathématique polonaise, ce qu'il réussira avec deux jeunes mathématiciens polonais Zygmunt Janiszewski (1888-1920) et Stephan Mazurkiewicz (1888-1945) en créant la revue mathématique Fundamenta mathematicae (1920), encore présente aujourd'hui.

»  Marczewski (Szpilrajn)

Tous trois, et plus tard A. Lindenbaum, s'attachèrent aux fondements des mathématiques, à la difficile construction axiomatique des ensembles et à  l'hypothèse du continu. Professeur éminent, Sierpinski fut membre de nombreuses sociétés savantes à travers le monde et publia certains de ses travaux en français : Leçons sur les nombres transfinis (1928), L'hypothèse du continu (1934), Les ensembles analytiques et projectifs (1950).

»  Cantor , Zermelo , Russel , Gödel , Cohen, ...

Outre ces sujets fondamentaux, on doit à Sierpinski de nombreux résultats en topologie (avec son compatriote Kuratowski), en théorie des nombres (équations diophantiennes en particulier, Théorie élémentaire des nombres, 1964) et sur les premiers objets fractals que Benoît Mandelbrot, mathématicien français d'origine polonaise, étudia tout particulièrement dans les années 1970.

Les mathématiciens qualifient souvent « d'élémentaire » une publication ne relevant pas de résultats nouveaux, fruits d'une recherche intensive sur un sujet précis et pointu. Cela ne signifie hélas nullement qu'une telle publication se lise comme un polar!

»  Hilbert , Peano , JuliaVon Koch              Conjecture de Sierpinski :  »

Carpette (ou tapis) de Sierpinski :

Il s'agit d'une figure fractale dont on obtient facilement une approche selon l'algorithme suivant :

 
Triangle de Sierpinski (1915) :

On obtiendra une approche de cette figure fractale selon l'algorithme suivant :

Vous devriez obtenir quelque chose comme... : »

Nombres de Sierpinski :

Sierpinski s'intéressa à deux types de nombres :

Sierpinski prouva (1960, » réf. 2) qu'il existe une infinité de tels nombres s dans un mémoire intitulé « Sur un problème concernant les nombres k.2n + 1 » :  

Nombres quasi-parfaits :

Un nombre parfait est un entier naturel qui égale la somme de ses diviseurs propres (autres que lui même), c'est le cas, par exemple de 6 = 1 + 2 +3 ou de 28 = 1 + 2 + 4 + 7 + 14. En 1964, Sierpinski pose le problème de l'existence de nombres n dont la somme des diviseurs propres serait non plus n mais n + 1.

Malgré la puissance des ordinateurs actuels, cette recherche reste aujourd'hui infructueuse. On sait seulement qu'un tel nombre (s'il existe) est un carré impair supérieur à 1035 et qu'il possède au moins 7 diviseurs premiers.

Nombres amicaux & quasi-amicaux : »              Nombres pratiques : »            Nombres puissants : »


     Pour en savoir plus :

  1. 250 problèmes de théorie élémentaire des nombres par W. Sierpinski, Ed. Jacques Gabay, 1992.
  2. Sur un problème concernant les nombres k.2n + 1 (Éléments de mathématiques, Bâle, 1960) :
    http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=GDZPPN002074621&IDDOC=243296
  3. Pyramide de Sierpinski : http://www-irem.univ-paris13.fr/site_spip/spip.php?article369


Noether Amalie  Snedecor
© Serge Mehl - www.chronomath.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On pourra étudier la pyramide de Sierpinski (réf. 3), version 3D de ce bel objet fractal.


© Serge Mehl - www.chronomath.com