ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Opérations sur les fractions, pourcentages
    Coefficient multiplicateur, indice   
  tout au long de la page
   
origine de la notation fractionnaire , coefficient multiplicateur , indice (d'évolution) , évolutions successives   

Égalité de fractions :

Une fraction a/b représente une division non évaluée d'un entier a par un entier non nul b. Deux fractions seront dites égales si elles représentent le même quotient (résultat de la division).

Rappelons que l'on réserve l'appellation écriture fractionnaire à une écriture où x et y peuvent être non entiers. Il est alors correct d'écrire, par exemple, mais cette dernière écriture n'est pas une fraction au sens strict du terme.

Il résulte des propriétés de la multiplication et de la division que :

Par suite :

Deux fractions a/b et c/d sont égales si et seulement si les produits en croix ad et bc sont égaux.

  Addition et soustraction de fractions :

On ne peut ajouter (ou soustraire) que des fractions de même nature, c'est à dire de même dénominateur. Pour ce faire, on utilise la propriété remarquable rappelée ci-dessus :

On ne change pas la valeur d'une fraction si l'on multiplie (ou divise) ses termes par un même nombre

On cherche alors le plus petit multiple commun (PPMC) aux dénominateurs entrant en jeu :

Rôle de 1 en calcul fractionnaire : l'unité joue un rôle particulièrement pratique; elle représente le tout : dans un partage en n parties égales, 1 = n/n.
Si je dépense le quart de mon budget puis le dixième, que me reste-t-il en termes de fractions ? Rép : 1 - 1/4 - 1/10 = 20/20 - 5/20 - 2/20 = 13/20.

Variante
: je dépense le quart de mon budget puis le dixième du reste. Quelle fraction de mon budget me reste-t-il alors ?  Rép : 1 - 1/4 = 3/4. Après la 1ère dépense, le reste est 3/4. Le dixième du reste est 3/40. Il me reste donc 3/4 - 3/40 = 27/40.

Multiplication d'une fraction par un entier n :

La notation désigne l'addition réitérée, somme de n fractions égales à . La valeur numérique de la fraction est donc multipliée par n. C'est dire que :

Notons ici que diviser, c'est multiplier par l'inverse :

Division d'une fraction par un entier n :

Il s'agit de l'opération inverse de la précédente. La valeur numérique de la fraction est divisée par n. Pour ce faire, on multiplie le dénominateur de la fraction par n. C'est dire que :

Numériquement, on peut tout aussi bien diviser a par n mais on n'obtient généralement plus une fraction. Pire, cette division peut aboutir à un quotient non décimal et inciter à des arrondis douteux ! Le cahier des charges est ici d'obtenir une fraction comme résultat. voici un cas légal... :

Fraction n/d d'une quantité Q :

Prendre une fraction n/d d'une quantité Q c'est partager Q en d parts égales et en prendre n. Numériquement, cela consiste donc à diviser Q par d et multiplier le résultat par n. Il revient au même de multiplier n par Q et de diviser ensuite par d. En notation fractionnaire, on écrit alors :

  
La facture du garagiste s'élève à 520 euros. J'en paye les 3/8 (trois huitièmes). Le reste sera payé en quatre mensualités. Quel en sera le montant ?
Rép : j'ai payé 65 euros. Il reste 455 euros. Le montant cherché en est le 1/4, soit 113,75 euros.  

Pourcentage d'une quantité Q, taux d'intérêt, coefficient multiplicateur, indice d'évolution :

Un pourcentage n'est autre qu'une écriture fractionnaire de dénominateur 100. Dépenser les 2/5 (deux cinquièmes) de sa fortune, c'est en dépenser 40/100, ce que l'on note 40% (quarante pour cent) :  en effet, 2/5 = 4/10 = 40/100.

Par suite, calculer t % d'une quantité Q, c'est prendre t/100 de Q. Donc, comme expliqué ci-dessus :

  
1. Lors d'un référendum, sur 26 000 000 de suffrages exprimés, 52% ont voté "oui", 3% des votes ont été déclarés nuls. Combien d'électeurs ont-ils voté non ?
Rép : 45% des suffrages exprimés correspondent à des "non", ce qui représente 11 700 000 électeurs (45 x 2600000/100)
2. Lors d'une vente promotionnelle, les téléviseurs d'une grande surface qui valaient 800 euros ont été soldés à 600 euros. Quel fut le pourcentage de la solde ?
Rép : La solde fut de 200 euros pour 800, soit 2 pour 8, donc 1 euro pour 4. Or 1/4 = 25/100. La solde fut de 25%.

  Dans les situations bancaires, un taux d'intérêt est un pourcentage exprimant le montant de l'argent dû ou rapporté :

Les problèmes d'intérêt ne sont pas toujours simples : on parle d'ailleurs d'intérêt simple et d'intérêt composé... De plus, ils ne sont pas toujours proportionnels aux sommes placées (calculs par tranches, plafonnement, abattement, primes de fidélité, etc.

Proportionnalité :                 intérêt simple , intérêt composé

Taux et pourcentage d'évolution, coefficient multiplicateur :

Si une population de N éléments (individus statistiques)  augmente de 5%, on parle de pourcentage (ou taux) d'évolution, N devient N + 5%N, soit 1,05N : le coefficient multiplicateur est 1,05.

Si au contraire, elle diminue de 5% elle deviendrait N - 5%N, soit (1 - 5/100)N = 0,95)N : le coefficient multiplicateur est 0,95.

Si p est le pourcentage d'évolution (positif ou négatif), le coefficient multiplicateur est 1 + p.

  On a tort de souvent confondre un taux et un pourcentage :  un taux peut être 0,4 : il correspond à 4/10 = 40/100, donc à un pourcentage (en fraction sur 100) de 40%. Si on dit qu'un pourcentage est de 0,4, alors il s'agit de 0,4%, donc de 0,4/100, soit un taux de 0,004 !

  
1°/  Un pull à 24 euros est soldé à 30%. Quel est son nouveau prix ?
  Rép : Le pourcentage d'évolution est ici -30% = -0,3. Le coefficient multiplicateur est ici 1 - 0,3 = 0,7. Le pull coute donc 16,8 euros.

Indice d'évolution :       aussi indice moyen

Dans les problèmes de statistique économique, on parle souvent d'indice d'évolution : on se donne une valeur de base, également dite de référence, et on calcule le coefficient multiplicateur par rapport à cette base ramenée à 100. Un exemple simple :

Dans une entreprise E, le chiffre d'affaire (en milliers d'euros) entre 2000 et 2003 est donné par le tableau suivant :

année 2000 2001 2002 2003
chiffre d'affaires 520 610 680 600

Si on ramène à 100 le chiffre d'affaires de l'an 2000, c'est que l'on divise par 520 : ce qui ramène à 1, et que l'on multiplie par 100. Les autres valeurs sont obtenues proportionnellement. On obtient alors les indices d'évolution de chaque année par la formule magique :

L'année de référence correspond à l'année 0. On obtient alors le tableau ci-dessous (à 0,1 près) :

année 2000 2001 2002 2003
chiffre d'affaires 520 610 680 600
indice d'évolution 100 117,3 130,8 115,4


Dans cet exemple, l'année 2003 montre une chute du chiffre d'affaires.
1°/ Si on prend l'année 2002 comme année de référence, quel est l'indice de l'année 2003 ?
2°/ Quel est le coefficient multiplicateur de l'année 2000 à 2002 ?
3°/  Quel est le pourcentage d'augmentation du chiffre d'affaires de l'année 2000 à 2003
Rép
: 1°/  88,2  (un indice peut être inférieur à 100)      2°/  1,308      3°/  15,4%

  Un pourcentage d'évolution (augmentation ou diminution) s'obtient à partir de l'indice d'évolution en lui retirant 100. Si le résultat est négatif, il s'agit d'une baisse égale à la valeur absolue du montant trouvé.

Multiplication d'une fraction par une fraction (fraction de fraction, évolutions successives) :

Les animations ci-dessous illustrent le principe de la multiplication de deux fractions. On montre que les 3/4 (trois quarts) de 2/5 (deux cinquièmes) correspondent à 6/20 (six vingtièmes), soit 3/10 (trois dixièmes). On écrit alors :

L'animation ci-dessous montre que cela revient à prendre les 2/5 de 3/4 :

 

Règle : Le produit de deux fractions s'obtient en multipliant entre eux les numérateurs d'une part, les dénominateurs d'autre part. Ce produit est commutatif.

On peut retrouver ici que diviser par n consiste à multiplier par l'inverse de n

  
La citerne de Pierre est remplie aux trois quarts de sa contenance. Cet hiver, il a consommé les deux tiers de cette quantité.
Quelle fraction de la contenance reste-t-il dans la citerne ?

Rép :
2/3 de 3/4 égale 6/12, soit 1/2. Or 3/4 - 1/2 = 1/4. Il reste un quart.

Quotient de fractions :

Diviser une fraction a/b par la fraction c/d est l'opération inverse de la multiplication par c/d. Numériquement, diviser a par c revient à multiplier le dénominateur b par c et, diviser b par d revient à multiplier le numérateur a par d :

Ainsi diviser par c/d c'est multiplier par d/c : on retrouve encore que diviser revient à multiplier par l'inverse.

  
Les 3/8 de la fortune de Pierre sont exactement les 9/4 de celle de Paul.
Pierre est donc beaucoup plus riche que Paul. Combien de fois plus ?
Rép : Ramenons à 1 euro la fortune de Paul. Soit alors x celle de Pierre :  3/8 de x égale 9/4, donc x = 9/4 ÷ 3/8 = 72/12.
Pierre est 6 fois plus riche que Paul.

Entraînez-vous (programme JavaScript) :

Pourcentage de pourcentage, évolutions successives :

Si, dans une population statistique de N éléments (individus statistiques), il y x% d'éléments ayant le caractère X dont y% ont également le caractère Y, alors il y a ( pourcentage) y% de Nx/100 éléments qui possèdent les deux caractères X et Y, c'est à dire :

  En termes de coefficients multiplicateurs, si une quantité subit deux ou plusieurs pourcentages d'évolution successifs, le coefficient résultant sera le produit des coefficients.

  
1°/  Dans une classe de Terminale STG, 40% sont des garçons et 40% des filles ont pris l'option informatique de gestion.
Quel pourcentage des élèves de la classe sont-ils des filles ayant pris cette option ?
Rép : le pourcentage de filles de la classe est 60% et 40% de ces 60% font 24%  (40/10060/100 = 2400/100 = 24).
En termes de coefficient multiplicateur c, on pouvait écrire c = 0,60,4 = 0,24, soit
24%.

2°/ Lors des soldes, un commerçant affiche -20% de réduction. En fin de période, il solde encore de 30% les produits restants. La solde est-elle de 50% ?  Rép : non ! il s'agit là encore de pourcentages d'évolution successifs; le coefficient résultant est 0,80,7 = 0,56. Or 1 - 056 = 0,44 : la solde est de 44% sur les produits restants.

3°/ Une action en bourse a baissé de 5%. Quelle devrait être la hausse de la prochaine cotation afin qu'elle retrouve sa valeur avant la baisse ?  Rép. : il s'agit d'évolutions successives. Le coefficient résultant doit être 1; le coefficient multiplicateur de la baisse est 0,95. Soit c le coefficient cherché  : t 0,95 = 1, soit t = 1/0,95 1,0526... : l'action retrouvera sa valeur avant la baisse si elle augmente de 5,26%.

4°/  Paul a placé 1000 € en épargne à 3% pendant 10 ans (chaque année, le capital placé augment de 3% : intérêt composé). Quel est le montant de son capital à l'issue des 10 années ? Rép : on est face à 10 évolutions successives de coefficient multiplicateur 1,03; le coefficient multiplicateur résultant est donc (1,03)10 1,344. Le capital est donc (sensiblement) 1344 €.

Pourcentage (ou Taux) moyen d'évolution, Indice moyen d'évolution :

Reprenons l'exemple de l'entreprise E dont le chiffre d'affaire (en milliers d'euros) entre 2000 et 2003 est donné par le tableau suivant et dont on avait calculé les indices d'évolution par rapport à l'année 2000 de référence :

année 2000 2001 2002 2003
chiffre d'affaires 520 610 680 600
indice d'évolution 100 117,3 130,8 115,4

Les indices et taux moyens d'évolution sont ceux qui correspondraient à une même évolution d'année en année aboutissant à l'indice (ou taux) final. Comme précédemment, les calculs se font facilement en termes de coefficients multiplicateurs. Dans l'exemple ci-dessus, le coefficient multiplicateur final est 1,154. Si t est le taux moyen d'évolution des années 2000 à 2004, on doit avoir (1 + t)3 = 1,154 (trois évolutions successives à taux constant) : 1 + t est la racine cubique de 1,154, soit 1 + t 1,0489.

L'indice moyen est donc 104,89, soit 104,9 à 0,1 près. Le taux moyen t est de 0,049, soit 4,9%.

  Par prudence, il est bon de vérifier... : on doit avoir, sensiblement 520 (1,0489)3 = 600. Ce qui est vrai.

D'une façon générale si y = xn, alors x = y, racine n-ème de y que l'on écrit aussi y1/n afin de "coller" avec la règle des exposants :

(ya)b = yab , soit ici : (y1/n)n = yn/n = y1 = y.

Voici un petit exo avec la racine onzième (puissance 1/11) :

  
Le père de Paul dit que sa maison achetée 180 000 € en 1992 a été évaluée en 2003 à 432 000 €.
Quel est le coefficient multiplicateur ? Quel est le pourcentage annuel moyen d'élévation du prix ?
Rép : le coefficient multiplicateur est 432000/180000, soit 2,4. Onze ans se sont écoulés. Le pourcentage moyen p devra vérifier (1 + p)11 = 2,4. La calculatrice fournit 2.41/11 1,0828, soit sensiblement 1,083. On peut donc conclure que tout se passe comme si le prix de la maison avait augmenté de 8% par an pendant 11 ans.

Voir intérêt composé , Bonus-Malus


Exercices type Bac STG (Source Education nationale) : ..\base\exomaths-STG-2006.pdf


Exercices, niveau collège :

Autoévaluation  #1 niveau fin de 6ème/début 5ème     fractions, opérations en ligne, priorités, ( )
Autoévaluation #2    calcul fractionnaire, petits problèmes
Autoévaluation #3  calcul fractionnaire, petits problèmes
Autoévaluation #4 niveau 6ème/5ème    fractions & pourcentages #1
Autoévaluation #5   fractions & pourcentages #2
Histoire d'eau    fractions & pourcentages
Hélène et ses timbres   appliquer une fraction à une quantité, produit de fractions
Airbus   fractions, équation élémentaire
En salle de permanence...    fractions & équation du 1er degré
Loisir moderne...    calcul fractionnaire


© Serge Mehl - www.chronomath.com