ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

KHAYYAM Omar ibn Ibrahim, persan, 1048-1131

Omar al-Khayyam (parfois écrit al-Hayyam), célèbre philosophe, poète, astronome, disciple d'Avicenne est connu dans le monde mathématique pour ses commentaires des Éléments d'Euclide (en particulier, théorie des proportions et discussion du 5e postulat proche de celle de Saccheri) et sa classification des différents types d'équations algébriques des second et troisième degrés où il fait usage de radicaux.

Né à Nishapur, au nord est de l'actuel Iran, Al-Khayyam vécut à Ispahan à l'invitation du sultan Seljuk, et à Samarcande (Ouzbekistan).

Son œuvre compléta les travaux d'Al-Khwarizmi et apporta des résolutions (partielles) de type géométrique (intersections de coniques) à différents types d'équations du 3è degré dont il donne une classification, formes : 

  x3 + ax = b ; x3 + b = ax ; x3 = ax + b;
  x
3 + a = bx2 ;  x3 + ax2 = bx+ c;
  ...

Comme chez Al-Khwarizmi, les coefficients a, b, c sont positifs, ils représentent des quantités géométriques concrètes; le cas x3 - 3x = 1 sera traité comme x3 = 3x + 1.

L'objectif principal étant de pouvoir répondre, positivement ou non, à des problèmes géométriques ou trigonométriques (nés de l'astronomie) non résolubles à la règle et au compas.

Le calcul des solutions pouvant être secondaire : il s'agit de leur existence et/ou de leur nombre. Ne pas oublier, qu'à cette époque, on utilise le système de numération à base 60 et que le calcul effectif de tels nombres se faisait par interpolations linéaires ou paraboliques et approximations successives nécessitant des opérations extrêmement longues et fastidieuses.

Par ailleurs, pour le calcul d'expressions de la forme (a + b)n, il utilisa le triangle dit de Pascal

Del Ferro :         Al-Biruni :

Pour en savoir plus :


Avicenne  Bhaskara
© Serge Mehl - www.chronomath.com