ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

KÖNIG (ou KOENIG) Samuel, allemand, 1712-1757

Physicien, philosophe, juriste. Ami de Voltaire, il fut l'élève de Jean Bernoulli, du baron de Wolf et de Leibniz. Il enseigna les mathématiques, la philosophie et le droit à La Haye. Ses recherches portent en mécanique, et en calcul des probabilités.

König fut un adversaire acharné de Maupertuis à propos de son principe de moindre action qu'il attribuait à Leibniz.

En physique, un repère de König est synonyme de repère barycentrique : c'est à dire dont l'origine est le centre de gravité d'un système en mouvement de translation par rapport à un système galiléen (du nom de Galilée).

En mathématiques, on rencontre son nom dans les cours de probabilités, souvent jumelé à Huygens, pour le calcul de la variance d'une série statistique :
Formules dites de König pour la variance et la covariance (cas discret) :

Si X désigne une variable aléatoire discrète ou une série de données statistiques sa variance est la moyenne (espérance mathématique) des carrés des écarts à la moyenne x = E(X), c'est à dire :

V(X) = E(X - x )2

En termes de série statistique x1, x2, ..., xN , ni désignant l'effectif partiel de la donnée xi, la formule s'écrit :

Également attribuée à Huygens qui l'utilisa 80 ans plus tôt dans  des données d'observation astronomique, la formule de König pour la variance  est extrêmement utile dans la pratique :

V(X) = E(X2) - [E(X)]2

Preuve : Les propriétés de linéarité de l'espérance mathématique permettent d'écrire V(X) = E(X - x)2 = E(X2) - E(2xX) + E(x2) = E(X2) - 2xE(X) + x2 =  E(X2) - 2x2 +x2 = E(X2) - x2 = E(X2) - [E(X)]2.

 
Étude d'un tableau statistique #1

Tableau statistique à deux variables X et Y :    

La covariance entre deux variables aléatoires ou séries statistiques X et Y, de moyennes respectives x et y, est la moyenne du produit des variables centrés X - x et Y - y, à savoir :

cov(X,Y) = E[(X - x )(Y - y)]

Dans le cas élémentaire d'une série statistique double (x1, y1),  (x2, y2), ..., xN, yN), la formule s'écrit :

              cas plus général d'un couple statistique :

La formule de König pour la covariance est alors :

cov(X,X) = E(XY) - E(X)E(Y)

Preuve : Les propriétés de linéarité de l'espérance mathématique permettent d'écrire cov(XY) = E(XY) - yE(X) -  xE(Y) + xy. Les deux derniers termes s'annulent et le résultat annoncé est confirmé.

Corrélation linéaire et méthode des moindres carrés :

Remarque :    

La covariance est une forme bilinéaire symétrique dont la forme quadratique associée est la variance : cov(X,X) = V(X).

Cas d'une variable aléatoire continue :
  Huygens , Pearson

 


Du Gua  Clairaut
© Serge Mehl - www.chronomath.com