ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Abscisse, ordonnée, coordonnées selon d'Alembert
   
(Dictionnaire raisonné des Sciences, des Arts et des Métiers
)

 Texte original. Seuls sont modifiés la mise en page, quelques tournures et aspects orthographiques ou grammaticaux Les mots ou les commentaires en vert sont ajoutés pour une meilleure compréhension

ABSCISSE, s. f. (substantif féminin) est une partie quelconque du diamètre ou de l'axe d'une courbe, comprise entre le sommet de la courbe ou un autre point fixe et la rencontre de l'ordonnée. Telle est la ligne AE comprise entre le sommet A de la courbe et l'ordonnée EM. On appelle les lignes AE abscisses, du latin abscindere, couper, parce qu'elles sont des parties coupées de l'axe ou sur l'axe (...).

abscindere a pour participe passé abscissum. Mais on peut aussi estimer que abscisse provient de ab, préposition marquant une séparation et scindere = diviser, morceler, dont le participe passé est scissum.

  Selon d'Alembert, une troisième proportionnelle à deux nombres a et y est le nombre x tel que a/y = y/x, ce qui équivaut ici à y2 = ax, équation de la parabole ci-dessus en prenant le sommet A comme origine. Les cas de l'ellipse et de l'hyperbole sont aussi évoqués.

ORIGINE, en Géométrie, se dit du point par lequel on commence à décrire une courbe, lorsqu'on la décrit par un mouvement continu. On appelle aussi assez souvent origine de la courbe son sommet, c'est-à-dire le point A (ci-contre) où l'on suppose que commencent les ordonnées et les abscisses.

sur la figure reproduite ci-contre, d'Alembert considère donc AP comme l'abscisse de M, et PM son ordonnée. (MT) représente la tangente en M à la courbe.

ORDONNÉE, s. f. (substantif féminin) c'est le nom qu'on donne aux lignes tirées d'un point de la circonférence d'une courbe à une ligne droite, prise dans le plan de cette courbe et qu'on prend pour l'axe, ou pour la ligne des abscisses. Il est essentiel aux ordonnées d'être parallèles entre elles. On les appelle en latin ordinatim applicatae (mot à mot : régulièrement placées) ; telle est EM (ci-dessus).

Quand les ordonnées sont égales de part et d'autre de l'axe, on prend quelquefois la partie comprise entre l'axe et la courbe pour demi-ordonnée et la somme des deux lignes pour l'ordonnée entière (...).

Il n'est pas essentiel aux ordonnées d'être perpendiculaires à l'axe, elles peuvent faire avec l'axe un angle quelconque, pourvu que cet angle soit toujours le même (...).

COORDONNÉES, adj. pl. (Géom.) on appelle de ce nom commun les abscisses et les ordonnées d'une courbe, soit qu'elles fassent un angle droit ou non. La nature d'une courbe se détermine par l'équation entre ses coordonnées. Voyez COURBE. On appelle coordonnées rectangles, celles qui font un angle droit.

  Jean le Rond d'Alembert

Pour en lire ou savoir plus :


© Serge Mehl - www.chronomath.com