![]() |
! On ne le confondra pas avec son compatriote et contemporain Beppo Levi (1875-1961).
Né à Padoue, Levi-civita y fera ses études. Ricci-Curbastro fut un de ses professeurs et ami. Avant tout physicien, il enseigna la mécanique rationnelle et céleste à Padoue et à Rome. En hydrodynamique, on lui doit, avec le hollandais D. J. Struik (1894-2000), d'importantes avancées sur la propagation des ondes de surface irrotationnelles (1924, théorie de la houle après ceux de Stokes) que complétera M. L. Dubreil-Jacotin.
En sciences physiques, ses travaux portent aussi sur l'électromagnétisme et les théories de Lorentz et de Maxwell et, en mathématiques, on retiendra principalement, en collaboration avec son professeur Ricci-Curbastro, la création (1901) du calcul différentiel absolu dans un traité commun, écrit en français, Méthodes de calcul différentiel absolu et leurs applications qui deviendra :
Le calcul tensoriel : |
Le tenseur (terme défini par Levi-Civita), généralisation de la notion de vecteur, possédant des propriétés invariantes par changement de base, s'avéra être un outil mathématique indispensable en sciences physiques car il permet d'établir des propriétés indépendantes du repère choisi.
On le rencontre dans toutes les branches de la physique : optique, électrodynamique et gravitation, théorie des réseaux électriques, mécanique ondulatoire, mécanique quantique. Le calcul tensoriel vit sa consécration dans l'élaboration de la théorie de la relativité généralisée d'Albert Einstein.
Sur ce sujet pointu et d'une extrême rigueur, nécessitant de nombreuses notions premières, on ne peut donner aucun aperçu, raison pour laquelle aucune approche n'est présentée. La parole est laissée ci-dessous aux spécialistes (dont les créateurs).
➔ Pour en savoir plus :