ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

LYAPUNOV (Lyapounov) Alexandre Mikaïlovitch, russe, 1857-1918

 !   On ne le confondra pas avec son homonyme et compatriote Alexeï Andreïevitch Lyapunov (1911-1973) qui, dans les années 1940, développa l'algorithmique et la cybernétique.

Alexandre Lyapunov étudia à l'université de Saint-Pétersbourg (alors capitale de l'empire russe) sous la houlette de Tchebychev qui  fut son directeur de thèse sur un sujet de physique mathématique portant, en mécanique des fluides, sur la stabilité de l'équilibre d'un système matériel dans un liquide en rotation (1885). Il fut Professeur à Saint-Pétersbourg à l'exception de la période 1893-1901 où il enseigna en Ukraine à l'université de Kharkov.

Dans la continuité de ce premier travail, ses travaux portent sur la physique mathématique, en particulier sur la résolution et les conditions aux limites des systèmes différentiels décrivant un système mécanique possédant un nombre fini de degrés de liberté (susceptible de s'appliquer par exemple à la stabilité mécanique du système solaire comme le fit Laplace un siècle auparavant). Ses travaux s'inscrivent ainsi dans ce qu'on appelle aujourd'hui la théorie des systèmes dynamiques.

»  Andreï Markov , Yoccoz , Avila                  La notion de système dynamique : »

Dans le cadre de l'appréciation des erreurs d'observation, il s'intéressa également au calcul des probabilités. Il fut membre de l'Académie des sciences de Saint-Pétersbourg dès 1901. Dépressif, il se suicida suite à la mort de son épouse victime de la tuberculose.

On doit en particulier à Alexandre Lyapunov une généralisation du théorème de De Moivre-Laplace, appelé aujourd'hui théorème central limite :

Lorsque X1, X2 , ..., Xn sont des variables aléatoires indépendantes de même loi de probabilité, d'espérance mathématique m, d'écart-type σ, la variable Zn définie par :

 

converge en loi vers la loi normale centrée réduite.

Un peu plus sur ce théorème, convergence en loi : »      »  Polya


Stieltjes  Pearson 
© Serge Mehl - www.chronomath.com