ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

WARREN John, anglais , 1796-1852

En 1828, ce mathématicien anglais exposa, indépendamment des travaux précédents d'Argand sur le sujet, une interprétation géométrique des nombres complexes intitulé A treatise on the geometrical représentation of the square roots of negatives quantities, soit : Traité sur la représentation géométrique des racines carrées de quantités négatives).

Comme chez Argand, les nombres de la forme a + b sont représentés au moyen d'un point M(a,b) : les quantités imaginaires b sont portées sur l'axe des ordonnées Oy perpendiculairement à l'axe Ox des nombres réels a.

La racine carrée d'une quantité négative, comme (-9) s'interprète comme [9 x (-1)] = 3.

Rappelons que les nombres complexes (imaginaires) firent leur apparition avec l'italien Bombelli dans la résolution de l'équation du 3ème degré.

L'interprétation de Wessel  :  Les nombres complexes selon Gauss  :


Steiner  Duhamel
© Serge Mehl - www.chronomath.com