ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Étude d'une quadrique  par réduction d'une forme quadratique    TD niveau Sup

 On suppose ici connues les notions de valeurs propres, de vecteurs propres et de diagonalisation d'une matrice :

Valeurs propres, vecteurs propres :

L'espace étant rapporté à un repère orthonormé (0, i, j, k), on considère l'ensemble des points (surface algébrique) de l'espace vérifiant l'équation :

yz + zx - xy = 1

Cette équation est associée à la forme quadratique q : (x,y,z) yz + zx - xy dont on recherche la ligne de niveau q(x,y,z) = 1.

  D'une façon générale une ligne de niveau k (k réel donné) d'une fonction f : u f(u), est l'ensemble des u tels que f(u) = k. Cette définition coïncide avec le vocabulaire de la topographie (altitude).

i/ Vérifier que la matrice de q est ici :

ii/ Calculer les valeurs propres de M.            Voir exercice en suivant ce lien

iii/ Montrer que le sous-espace vectoriel associé à la valeur propre double λ = 1 est de dimension 2 puis que u(1/2, 0, 1/2) et v(-1/6, 2/6, 1/6) constituent une base orthonormée de ce sous-espace propre.

4i/ Montrer que le sous-espace vectoriel associé à la valeur propre λ = -2 est une droite vectorielle dont w(1/3, 1/3, -1/3) est un vecteur directeur.

5i/ Vérifier que B' = (u, v, w) est une base orthonormée de E et que, exprimée dans la base (u, v, w) rendant la matrice de q diagonale, sans autres calculs, la forme q s'écrit :

q(X,Y,Z) =  ½ (X2 + Y2 - 2Z2)

soit :

X2 + Y2 - 2Z2 = 2

Sous cette forme, on reconnaît une quadrique dont le plan des (X,Y) est un plan de révolution de la surface, puisque :

X2 + Y2 = 2Z2 + 2

6i/ Prolongement : retrouver ce résultat par le calcul de x, y et z en fonction de X, Y et Z; pour ce faire, on établira l'égalité matricielle (formule de changement de base) :


© Serge Mehl - www.chronomath.com