ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Étude de deux suites définies par récurrence      niveau Sup/spé


Ce 2° est plus délicat... Si vous séchez après avoir bien cherché : 


© Serge Mehl - www.chronomath.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution

Il  y a là une bizarrerie concernant les 2 racines positives séparées par le nombre 2. L'équation (x2 - 2)2 = 2 + x équivaut à x4 - 4x2 - x + 2 = 0, facilement factorisable en (x - 2)(x + 1)(x2 + x - 1). Outre  -1 et 2, les solutions sont (-1 ± 5)/2. On retrouve donc effectivement 0,618 à 0,001 près.

  Viète et le calcul de π , Fibonacci et le nombre d'or


© Serge Mehl - www.chronomath.com