ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Conjecture d'Erdös

 on ne traite ici que le cas très particulier de la conjecture où le triangle est équilatéral.

On considère un triangle équilatéral ABC et un point M intérieur à ce triangle (éviter a priori de le placer sur un de ses axes de symétrie).

On note H, K et L les projections orthogonales de M sur les côtés du triangle.

La conjecture énonce d'Erdös qu'en général :

MA + MB + MC 2 x (MH + MK + ML)

On sait que les médianes d'un triangle se coupent au tiers à partir de leur pied. Donc, si M est l'orthocentre, également centre de gravité (à droite), on a clairement l'égalité voulue puisque :

MA = 2MH , MB = 2MK et MC = 2ML

Supposons maintenant M autre que O, orthocentre et centre de gravité du triangle (dessin ci-dessous). ABC étant équilatéral, on a, selon le théorème de Viviani pour tout point M :

MH + MK + ML = AH    (hauteur du triangle)

La conjecture étudiée devient alors :

 MA + MB + MC 2AH

On montre facilement, qu'à l'exception de O, aucun point M situé sur l'un des axes de symétrie, (AH) par exemple, ne convient en étudiant la fonction

M MA + MB + MC

lorsque M(0,y), identifié à son ordonnée y, décrit [AH] dans un repère orthonormé d'origine H dont les axes sont dirigés par [HB) et [HA) : f atteint son unique minimum en O, orthocentre et centre de gravité du triangle ABC.

 si on pose HB = a, on a HA = a3 et

MA + MB + MC = f(y) = a3 - y + 2(a2 + y2)

Le minimum de d est atteint en en y = a/3, soit au tiers de HA.

Soit maintenant M, non situé sur un des axes de symétrie. L'ellipse de foyers B et C, passant par M, coupe [AH] en J.

Par définition bifocale de l'ellipse, on a JB + JC = MB + MC et par convexité de cette courbe : AJ < AM. Par suite :

MA + MB + MC > JA + JB + JC

J étant situé sur [AH], on a JA + JB + JC 2AH et donc, a fortiori : MA + MB + MC > 2AH.  La conjecture d'Erdös, dans le cas équilatéral est donc prouvée.


© Serge Mehl - www.chronomath.com