ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Loi d'Ohm - Loi des mailles      niveau 1èreS     résistances et loi des nœuds

 

Un résistor, de résistance R, est branché aux bornes d'une pile de résistance interne 0,5 Ω et fournissant une tension de 3V (force électromotrice E).

On se propose de calculer la résistance R afin que la puissance dissipée par le résistor soit maximale.

1°/ En écrivant que UAB + UBA = 0 (loi des mailles), montrer que E = ri + Ri, où i désigne l'intensité du courant traversant le résistor (loi d'Ohm généralisée pour une maille fermée).

2°/  Sachant que la puissance dissipée par un résistor est P = Ri2, montrer que l'on a :

Étudier et représenter graphiquement la fonction R P(R) sur un ensemble de définition convenable. Conclure.

3°/ Quelle remarque pouvez-vous faire ? Quelle conjecture peut-on énoncer ? Pourriez-vous démontrer votre assertion ?

Si vous séchez après avoir bien cherché :


© Serge Mehl - www.chronomath.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

Solution :

1°/  Le cours de physique enseigne que UAB = Ri et UBA = E - ri et UAB + UBA = 0 conduit au résultat annoncé :

E = ri + Ri

2°/  Les hypothèses fournissent 3 = Ri + i/2, ce qui permet d'évaluer i en fonction de R :

En remplaçant i par cette expression dans P = Ri2, on obtient le résultat annoncé :

Sous cette forme P est une fonction de R. Calculons la fonction dérivée P'(R) :

P'(R) est du signe de 1 - 2R. On en déduit que :

D'une façon générale P(R) = ER/(R + r)2 et P'(R) est du signe de (r + R)(r - R), donc du signe de r - R. En dressant le tableau de variation de P, on constate que la puissance dissipée est maximale, si R = r.

La puissance maximale est ici 4,5 W. D'une façon générale, elle est égale à E2/4r.


© Serge Mehl - www.chronomath.com