ChronoMath, une chronologie des MATHÉMATIQUES
à l'usage des professeurs de mathématiques, des étudiants et des élèves des lycées & collèges

Un problème bestial...      niveau 2nde (trinôme du second degré)

Un éleveur veut construire dans son pré un parc à bestiaux. Il projette de lui donner une forme rectangulaire de 50 m de longueur sur 30 m de largeur. Il achète alors la longueur de clôture nécessaire à ce projet.

Ayant mûrement réfléchi, il se demande s'il ne pourrait pas, sans modifier la longueur de la clôture obtenir un parc de plus grande superficie en modifiant les longueur et largeur initialement projetées. Pourrais-tu l'aider ?

Noter (x) = 30 + x, la mesure en mètres de la nouvelle largeur. L'objectif est de calculer x afin d'obtenir une superficie maximale.


Tirer ou pousser la poignée P pour constater les variations de l'aire en fonction de x

Remarque :     

x peut être négatif : cela signifierait qu'il faut diminuer la largeur et augmenter d'autant la longueur car l''hypothèse selon laquelle on ne modifie pas la longueur de la clôture signifie que le périmètre du parc doit rester constant.

Complète la solution proposée ci-dessous :     

L(x) = ........ - (.............) ........ -  ........ - ....... = 50 - x

 On retrouve dans ce problème que le produit de deux nombres dont la somme est constante (ici le demi-périmètre) est maximum si ces nombres sont égaux.

Si tu sèches après avoir bien cherché :


© Serge Mehl - www.chronomath.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Réponses :

L(x) = 80 - (30 + x) = 80 - 30 - x = 50 - x

 On retrouve dans ce problème que le produit de deux nombres dont la somme est constante (ici le demi-périmètre) est maximum si ces nombres sont égaux.


© Serge Mehl - www.chronomath.com